Konferenzprogramm

 

 

 

Das gesamte Konferenzprogramm auf einem Blick? Kein Problem, alle Programminhalte finden Sie hier jetzt auch als praktische PDF-Broschüre ganz bequem zum durchscrollen, downloaden oder ausdrucken:

Zur PDF-Broschüre

 

 

Thema: Artificial Intelligence

Nach Tracks filtern
Nach Themen filtern
Alle ausklappen
  • Dienstag
    07.02.
  • Donnerstag
    09.02.
, (Dienstag, 07.Februar 2023)
09:00 - 10:45
Di 8.1
How (Not) to Measure Quality
How (Not) to Measure Quality

Measuring quality requires many questions to be answered. The most obvious ones may be: “What is quality?”, but also “How can we measure it?”, “Which metrics are most accurate?”, “Which are most practical?”.

In this talk, I share some general motivations for measuring quality. I review commonly used metrics that claim to measure quality, I rate them with regards to how they may be helpful or harmful to achieve actual goals. I give some examples how the weaknesses of one metric might be countered by another one to create a beneficial system.

Target Audience: Developers, Project Leader, Manager, Decision Makers, Quality Engineers, Testers, Product Owners
Prerequisites: Basic Software Project Experience, Rough Understanding of Software Development
Level: Advanced

Extended Abstract:
Measuring quality requires many questions to be answered. The most obvious ones may be: “What is quality?”, but also “How can we measure it?”, “Which metrics are most accurate?”, “Which are most practical?”.

In my experience, one question is often not answered or postponed until it is too late: “Why do we want to measure quality?” Is it because we want to control how well our developers are performing? Is it to detect problems early? Is it to measure the impact of changes? Is it the product or the process we care about? Is it to improve locally in a single team or globally across the company? Is there a specific problem that we are trying to solve, and if so, which one?

Instead of trying to define what software quality is – which is hard and depends on a lot of factors – we should first focus on the impact of our measuring. Some metrics may work great for one team, but not for the company as a whole. Some will help to reach your team or organizational goal, some will not help at all, and some will even have terrible side effects by setting unintended incentives. Some can be gamed, others might be harmful to motivation. Consider an overemphasis on lead time, which can lead to cutting corners. Or measuring the number of bugs found, which can cause a testers versus developers situation.

In this talk, I share some general motivations for measuring quality. I review various commonly used metrics that claim to measure quality. Based on my experience, I rate them with regards to how they may be helpful or harmful to achieve actual goals and which side effects are to be expected. I give some examples how the weaknesses of one metric might be countered by another one to create a beneficial system.

Michael Kutz has been working in professional software development for more than 10 years now. He loves to write working software, and he hates fixing bugs. Hence, he developed a strong focus on test automation, continuous delivery/deployment and agile principles.
Since 2014 he works at REWE digital as a software engineer and internal coach for QA and testing. As such his main objective is to support the development teams in QA and test automation to empower them to write awesome bug-free software fast.

The State and Future of UI Testing
The State and Future of UI Testing

UI testing is an essential part of software development. But the automation of UI tests is still considered too complex and flaky.
This talk will cover the "state of the art" of UI testing with an overview of tools and techniques. It will be shown which kind of representations are used by today's test tools and how the addressing of elements in the UI is done.
In addition, the role of artificial intelligence in the different approaches is shown and a prediction of testing tools of the future is presented.

Target Audience: Developers, Testers
Prerequisites: Basic Knowledge of UI-Testing
Level: Advanced

Extended Abstract:
UI testing is an essential part of software development. Despite technological progress, the automation of UI tests is still considered too complex to function completely without manual intervention.
In addition to classical selector-based approaches, more and more image-based methods are being pursued.
This talk will cover the "state of the art" of UI testing with an overview of tools and techniques. In particular, current problems and future developments will be discussed. Furthermore, it will be shown which kind of UI representations are used by today's test tools and how the addressing of elements in the user interface is done.
In addition, the role of artificial intelligence in the different approaches is shown and a prediction of testing tools of the future is presented on the basis of current research.

Johannes Dienst is Developer Advocate at askui. His focus is on automation, documentation, and software quality.

Michael Kutz
Johannes Dienst
Johannes Dienst
flag VORTRAG MERKEN

Vortrag Teilen

14:00 - 14:45
Di 8.2
Testing AI Systems
Testing AI Systems

At first glance, testing AI systems seems very different from testing “conventional” systems. However, many standard testing activities can be preserved as they are or only need small extensions.

In this talk, we give an overview of topics that will help you test AI systems: Attributes of training/testing/validation data, model performance metrics, and the statistical nature of AI systems. We will then relate these to testing tasks and show you how to integrate them.

Target Audience: Developers, Testers, Architects
Prerequisites: Basic knowledge of testing
Level: Basic

Extended Abstract:
From a testing perspective, systems that include AI components seem like a nightmare at first glance. How can you test a system that contains enough math to fill several textbooks and changes its behavior on the whims of its input data? How can you test what even its creators don’t fully understand?

Keep calm, grab a towel and carry on - what you have already been doing is still applicable, and most of the new things you should know are not as arcane as they might seem. Granted, some dimensions of AI systems like bias or explainability will likely not be able to be tested for in all cases. However, this complexity has been around for decades even in systems without any AI whatsoever. Additionally, you will have allies: Data scientists love talking about testing data.

In this talk, we give an overview of topics that will help you test AI systems: Attributes of training/testing/validation data, model performance metrics, and the statistical nature of AI systems. We will then relate these to testing tasks and show you how to integrate them.

Gregor Endler holds a doctor's degree in Computer Science for his thesis on completeness estimation of timestamped data. His work at Codemanufaktur GmbH deals with Machine Learning and Data Analysis.

Marco Achtziger is a Test Architect working for Siemens Healthcare GmbH in Forchheim. He has several qualifications from iSTQB and iSQI and is a certified Software Architect by Siemens AG.

Gregor Endler, Marco Achtziger
Gregor Endler, Marco Achtziger
flag VORTRAG MERKEN

Vortrag Teilen

16:15 - 17:15
Di 6.3
User-Experience-Design mit Explainable AI
User-Experience-Design mit Explainable AI

Erklärbare KI (Explainable AI, kurz XAI) ermöglicht es, automatisiert situations- und zielgruppenspezifische Begründungen für die Empfehlungen, Prognosen und Entscheidungen von KI-Systemen zu erzeugen.

Hierdurch lassen sich nicht nur Nachvollziehbarkeit und Akzeptanz automatisierter Entscheidungen bei Endanwender:innen steigern, sondern auch Reaktions- und Handlungsmöglichkeiten aufzeigen. Anhand praxisnaher Beispiele demonstrieren wir, wie die Methodenvielfalt Erklärbarer KI für das UX-Design genutzt werden kann.

Zielpublikum: Produktdesigner, UX-Designer, Projektverantwortliche, Datenwissenschaftler, Entscheidungsträger
Voraussetzungen: Grundkenntnisse im UI/UX-Design
Schwierigkeitsgrad: Anfänger

Extended Abstract:
Methoden der Erklärbaren KI (Explainable AI, kurz XAI) werden vor allem zur Analyse und Kontrolle von komplexen KI-Systemen eingesetzt. So nutzen Data Scientists Ansätze wie Partial Dependence Plots oder SHAP, um zu ergründen, welchem Teil der Eingabedaten ein Machine-Learning-Modell besondere Bedeutung zugemessen hat.

Doch Erklärbare KI lässt sich auch zur Gestaltung der User Experience für Endanwender:innen nutzen. “Warum erhalte ich ausgerechnet diese Empfehlung?” “Woran wurde bei dieser E-Mail ein Phishing-Verdacht erkannt?” “Warum ist der prognostizierte Verkaufspreis meiner Immobilie so niedrig?” Fragen dieser Art stellen sich häufig, wenn Nutzer:innen mit Anwendungen und Prozessen in Kontakt kommen, bei denen im Hintergrund ein KI-System am Werk ist, das auch für seine Entwickler:innen eine “Black Box” darstellt.

Erklärbare KI ermöglicht es, automatisiert situations- und zielgruppenspezifische Begründungen für KI-Entscheidungen zu erzeugen. Hierdurch lassen sich nicht nur Nachvollziehbarkeit und Akzeptanz automatisierter Entscheidungen steigern, sondern auch Reaktions- und Handlungsmöglichkeiten aufzeigen.

Neben einer allgemeinen Einführung in das Thema “User-Centric Explainable AI” demonstrieren wir anhand von praxisnahen Beispielen, wie die mittlerweile verfügbare Methodenvielfalt Erklärbarer KI ausgeschöpft und zur Gestaltung der Interaktion von Endanwender:innen genutzt werden kann.

Kilian Kluge arbeitet als Co-Gründer von Inlinity daran, mit Explainable AI Anwendungsbereiche für KI-Systeme zu erschließen, in denen bislang regulatorische oder unternehmerische Risiken einem Einsatz entgegenstehen. Zuvor war er mehrere Jahre als IT-Berater und Entwickler in der deutschen Finanzbranche tätig und hat an der Universität Ulm zu nutzerzentrierter KI promoviert.

Kilian Kluge
Kilian Kluge
flag VORTRAG MERKEN

Vortrag Teilen

, (Donnerstag, 09.Februar 2023)
09:00 - 10:45
Do 7.1
Entzaubert KI und stoppt die Verschwendung von Ressourcen
Entzaubert KI und stoppt die Verschwendung von Ressourcen

Das Gros der Projektideen in Unternehmen basiert heutzutage auf der Verwendung von KI zur Problemlösung. Aus der Vielzahl von diskutierten Projektideen zeichnet sich ein immer gleiches Bild ab: Geschäftsproblem wird beschrieben, Vorteilhaftigkeit einer möglichen KI-Lösung wird beziffert, aber KI an sich wird leider häufig als eine Art "Harry Potter" mit Zauberfähigkeiten gesehen.

KI ist jedoch Handwerk und die Sinnhaftigkeit von KI zur konkreten Problemlösung lässt sich in 5 Schritten strukturiert feststellen. Dies ist Inhalt des Vortrags.

Zielpublikum: Projektleiter:innen, Fachseite, Manager, Entscheider
Voraussetzungen: Interesse am Thema - jedoch kein Fachwissen
Schwierigkeitsgrad: Anfänger

Extended Abstract:
Angesichts der großen Flut von Investitionen und Einsteigern, die das Machine Learning-Spielfeld neu betreten, glauben wir, dass es an der Zeit ist, einige der Erkenntnisse zu teilen, die wir aus unserer Erfahrung in einem breiten Spektrum von Rollen und Projekten gewonnen haben; insbesondere das Wissen, welches für die Auswahl und die Umsetzung von ML-Projekten am wichtigsten ist.

Die meisten ML-Projekte scheitern zu spät: Erst nachdem Unternehmen enorme Ressourcen in die Vorverarbeitung von Daten, die Programmierung, die Durchführung von Berechnungen und den Bau von Prototypen investiert haben.

Unser Ziel ist es, die Teilnehmer in die Lage zu versetzen, 80 % ihrer ML-Projektideen bereits in der Konzeptionsphase verwerfen zu können.

Olaf Erichsen ist Co-Founder und CEO der Heldenkombinat Technologies GmbH und Dozent an der Hamburg School of Business Administration (HSBA).
Seit 2016 hat Olaf weltweit über 300 KI-Anbieter evaluiert und versteht, was hier versprochen und was tatsächlich gehalten wird. Seit 2018 berät Olaf zudem Unternehmen dabei, sich im ML-Bereich strategisch richtig aufzustellen und signifikant zu wachsen. Eines dieser US-Start-ups wurde in einem der Top-Technologie-M&A-Deals 2020 übernommen.

Sustainability-Thinking-Process – Unser Weg zu nachhaltiger IT
Sustainability-Thinking-Process – Unser Weg zu nachhaltiger IT

Die IT ist verschwenderisch, das Einsparpotenzial entsprechend hoch. Die Wertschöpfungsketten von IT-Unternehmen und IT-Abteilungen offenbaren eine Vielzahl von Aspekten, die verschiedenste Nachhaltigkeitsziele berühren. Die methodische Betrachtung und Wirkungsanalyse einer exemplarischen IT-Wertschöpfung im Kontext der 17 Nachhaltigkeitsziele der UN führte uns zur Entwicklung des Sustainability-Thinking-Process - auf Basis von Design Thinking. Der Vortrag stellt das Vorgehensmodell, unsere Motivation und mitunter kontroverse Erkenntnisse vor.

Zielpublikum: Alle auf dem Weg zu einer nachhaltigen IT
Voraussetzungen: Keine
Schwierigkeitsgrad: Anfänger

Extended Abstract:
Dass Nachhaltigkeit keine esoterische Randerscheinung ist, ist inzwischen auch in der IT angekommen. Das Bewusstsein für nachhaltiges Wirtschaften ist in den meisten IT-Unternehmen zumindest so weit geschärft, dass man sich in Bezug auf Energieverbräuche und CO2-Emissionen Gedanken macht, diese möglichst zu reduzieren und unvermeidbare Energieverbräuche aus Ökostrom bezieht sowie in Klimakompensationen investiert.
Nachhaltigkeit ist allerdings mehr, als sich „nur“ klimafreundlich zu organisieren. Denn die Potenziale der IT sind auch hierbei umfassenderer und vielseitiger, als man das auf den ersten Blick vermuten mag. Nicht zuletzt auch vor dem Hintergrund, dass jede verschwendete Kilowattstunde Ökostrom durch die IT die Einsparung von fossiler Energie an anderer Stelle hemmt.
Die Wertschöpfungskette eines IT-Unternehmens oder einer IT-Abteilung offenbart eine Vielzahl von Aspekten, die auch weitere Nachhaltigkeitsziele berühren. Die methodische Betrachtung und Wirkungsanalyse einer exemplarischen IT-Wertschöpfung, in Bezug auf die 17 Nachhaltigkeitsziele der UN - den Sustainability Development Goals (SDG's) - führte uns zur Entwicklung einer Vorgehensvariante des Design-Thinking-Process - dem Sustainability-Thinking-Process. Dieses Vorgehensmodell begleitete unsere praxisbezogene Ermittlung potenzieller Nachhaltigkeitsdefizite in der BizDevOps-Wertschöpfung sowie der kreativen Entwicklung von Maßnahmen, Policies und Good Practices, um diese Defizite zu verringern.
Ein Blitzlist durch unsere Nachhaltigkeitsmotivation, dem entwickelten Vorgehensmodell, aber auch der Weg über kontroverse Erkenntnisse während der Maßnahmenfindung sind Teil dieser Kurzvorstellung und Diskussion.

Oliver Lukas ist Executive Business Analyst und Requirements Engineer bei msg und seit Jahrzehnten in unterschiedlichen Rollen und Positionen in der IT tätig. Methodisches und modernes Vorgehen sowie zielorientierte Lösungsfindung sind dabei Attribute, die er in seiner langen IT-Laufbahn nutzt und seit 2020 als Berater für das Bundesministerium für Wirtschaft und Klimaschutz für die Umsetzung der "Klimaneutralen Bundesverwaltung" adaptiert und anwendet. Der geborene Münchner ist Autor von technischen Büchern und Artikeln sowie Erfinder von Patenten und hat sich nun zum Ziel gesetzt, seine Erfahrungen in der Digitalisierung auch im Sinne der Nachhaltigkeit zu fokussieren.

Olaf Erichsen
Oliver Lukas
Oliver Lukas
flag VORTRAG MERKEN

Vortrag Teilen

14:30 - 15:30
Do 5.3
Leading AI Transformations
Leading AI Transformations

Artificial Intelligence (AI) and its sub-domain, Machine Learning (ML), have been developing quickly. Your organization could be planning for or be in the middle of an AI transformation.

In this talk, I will speak from my own experience managing the strategy and delivery for AI/ML programs and discuss practical steps for the executive leadership to ensure the success of their AI strategy and delivery.

Target Audience: Project Leaders, IT Leaders, Executives, Decision Makers
Prerequisites: None
Level: Basic

Zorina Alliata is a Sr. Machine Learning Strategist at Amazon, working with global customers to find solutions that speed up operations and enhance processes using Artificial Intelligence and Machine Learning. Zorina helps companies across several industries identify strategies and tactical execution plans for their ML use cases, platforms, and ML at scale implementations.

Zorina Alliata
17:00 - 18:00
Do 7.4
The Next Decade of Software Is About Climate – What Is the Role of ML?
The Next Decade of Software Is About Climate – What Is the Role of ML?

Climate action and green software engineering has risen to the top of many technology companies' agenda. With accuracy hungry algorithms ML software is consuming more and more computational resources, largely benefiting from the increasingly better hardware. Are the results worth the environmental cost?

This talk introduces the field of green software engineering, showing options to estimate the carbon footprint and discuss ideas on how to make Machine Learning greener, giving you the tools to take an active part in the climate solution.

Target Audience: Architects, Developers, Data Scientists
Prerequisites: Basic understanding of the AI lifecycle
Level: Advanced

Extended Abstract:
AI systems have a huge carbon footprint and impact our global commitment to keep global warming to no more than 1.5°C – as called for in the Paris Agreement. To reach this goal, emissions need to be reduced by 45 % by 2030 and reach net zero by 2050. The rising interest in getting a better handle on the carbon emissions due to the AI lifecycle has garnered interest from the research and practitioner communities across industry, government, academia, and civil society.

The objective of this learning series is to break beyond surface-level discussions and dive deep into understanding the challenges and opportunities related to assessing and mitigating the carbon impacts of AI systems.

This session will also walk through the Green Software foundation's Software Carbon Intensity specification and explain why how you measure impact matters.

Sara Bergman is a Senior Software Engineer at Microsoft Development Center Norway working in a team which owns several backend APIs powering people experiences in the Microsoft eco-system. She is an advocate for green software practices at MDCN and M365. She is a member of the Green Software Foundation and the chair of the Writer's project which is curating and creating written articles on the main GSF website and the GSF newsletter.

Sara Bergman
Sara Bergman
flag VORTRAG MERKEN

Vortrag Teilen

Zurück